Real-Valued Special Functions: Upper and Lower Bounds

نویسنده

  • Lawrence C. Paulson
چکیده

This development proves upper and lower bounds for several familiar realvalued functions. For sin, cos, exp and the square root function, it defines and verifies infinite families of upper and lower bounds, mostly based on Taylor series expansions. For tan−1, ln and exp, it verifies a finite collection of upper and lower bounds, originally obtained from the functions’ continued fraction expansions using the computer algebra system Maple. A common theme in these proofs is to take the difference between a function and its approximation, which should be zero at one point, and then consider the sign of the derivative. The immediate purpose of this development is to verify axioms used by MetiTarski [1], an automatic theorem prover for real-valued special functions. Crucial to MetiTarski’s operation is the provision of upper and lower bounds for each function of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Numbers for Real - Valued FunctionClassesP

We nd tight upper and lower bounds on the growth rate for the covering numbers of functions of bounded variation in the L 1 metric in terms of all the relevant constants. We also nd upper and lower bounds on covering numbers for general function classes over the family of L 1 (dP) metrics, in terms of a scale-sensitive combinatorial dimension of the function class.

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

Universal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications

It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy.  A formula to compute the lower upper bounds on the number  of interval-valued fuzzy sets needed to achieve a pre-specified approximation  accuracy for an arbitrary multivariate con...

متن کامل

On the Computation of Boolean Functions by Analog Circuits of Bounded Fan-in (Extended Abstract)

W e consider the complexity of computing Boolean functions b y analog circuits of bounded fan-in, i.e. b y circuits of gates computing real-valued functions, either exactly or as a sign-representation. Sharp upper bounds are obtained for the complexity of the most &@cult n-variable function over certain bases (signrepresentation by arithmetic circuits and exact computation b y piecewise linear ...

متن کامل

On the Computation of Boolean Functions by Analog Circuits of Bounded Fan-In

We consider the complexity of computing Boolean functions by analog circuits of bounded fan-in, i.e., by circuits of gates computing real-valued functions, either exactly or as sign-representation. Sharp upper bounds are obtained for the complexity of the most difficult n-variable function over certain bases (sign-representation by arithmetic circuits and exact computation by piecewise linear c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archive of Formal Proofs

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014